Biomonitoring of PCDD/Fs in populations living near Portuguese solid waste incinerators: Levels in human milk

M. Fátima Reis a,*, Carla Sampaio a, Pedro Aguiar b, J. Maurício Melim c, J. Pereira Miguel a, Olaf Păpke d

a Institute of Preventive Medicine, Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, Edificio Egas Moniz, Piso 0, Ala C, 1649-028 Lisbon, Portugal
b National School of Public Health, New University of Lisbon, Av. Padre Cruz, 1600-560 Lisbon, Portugal
c Public Health Regional Department, Rua das Hortas, 30, 9050-024 Funchal, Madeira, Portugal
d ERGO Forschungsgesellschaft mbH, Geierstr. 1, 22305 Hamburg, Germany

Accepted 26 May 2006
Available online 9 January 2007

Abstract

In the context of two Environmental Health Surveillance Programs, launched in response to public and scientific concern in relation to waste incinerators located near Lisbon and in Madeira Island, two human biomonitoring projects have been started in Portugal, focussed in dioxins and dioxin-like compounds in human milk. Results from the undertaken studies have already provided data on the extent and pattern of dioxin body burden of both studied groups as well as a preliminary temporal trend of dioxin levels for the population residing near Lisbon incinerator. The present paper investigates difference between exposed and non-exposed subjects under study and, from a preventive perspective, possible covariates of the dioxin levels in human milk. Emissions from both incinerators appear to be well controlled as there is no increase of human body burden of dioxins as measured in human milk of individuals living near these facilities. Concerning other determinants of dioxin levels, results suggest confirmation of previously found significant age-dependent trend towards higher levels of dioxins in aged subjects. On the contrary, association between mother’s levels of dioxins and parity lost significance. Apart from the issue of incineration, the general conclusion for the general population is that living in Lisbon as compared to Madeira results in higher milk dioxin levels and possible health risks. The profile of the single congeners for PCDD/Fs in human milk from Madeira and Lisbon shows similar contributions for 12378-PCDD, 23478-PCDF, 123678-HCDD and 2378-TCDD, that account altogether for about 84% of the total identified dioxin body burden in the studied groups.

Keywords: Incinerators; Biomonitoring; Human milk; PCDD/Fs; Portugal

1. Introduction

Dioxins and dioxin-like compounds are among the most toxic environmental pollutants that can be produced through waste incineration (either hazardous, municipal, or from hospital or slaughterhouse). Studies of human exposure to this kind of compounds have shown dioxin blood and milk levels as significant biomarkers of exposure (Deml et al., 1996; Glynn et al., 2003; Bocio et al., 2004; Cerna et al., 2004; Pirard et al., 2004; Schuhmacher et al., 2004; Wittsiepe et al., 2004; Yang et al., 2004; Agramunt et al., 2005; Kumagai and Koda, 2005). Therefore, human milk as well as blood or its components have been widely used in biomonitoring programs to assess human exposure to dioxins and dioxin-like compounds (Wittsiepe et al., 2000; Lakind et al., 2001; Joas et al., 2004; Scheeter et al., 1994).

Compared to blood, milk has particular advantages in dioxin exposure monitoring: no invasive sampling
techniques are needed and the higher lipid level facilitates analysis of the lipid-soluble compounds. However, the use of mother’s milk in probability-based surveys to extract results for the general population is questionable, since only a specific demographic segment (women, at reproductive age, breast-feeding, and thus non-representative of the general population) is being considered. For biomonitoring programs, carried out to provide data on dioxin exposure (particularly where there is little or no information), to evaluate temporal and spatial trends, and ultimately to assist in policy design to improve public health and safety, it is appropriate and very important to monitor dioxin exposure through human milk due to several reasons: (1) milk reflects maternal body burden of lipophilic chemicals during pregnancy and thus a measure of critical foetus’ exposure to those compounds; (2) being a human food and the first and main foodstuff for most newborn babies, milk can be a very significant pathway for infant exposure to dioxins. As such, human milk levels of these compounds may reflect the cumulative exposure during a determinant although short period (breast-feeding period) within individual lifespan; (3) because large volumes can be collected non-invasively, milk is also a convenient sampling specimen for biomonitoring purposes if it is collected taking into consideration all the relevant factors influencing fat content and thus levels of lipophilic compounds, namely the time of sampling during lactation, breast-feeding patterns and maternal characteristics (Needham and Wang, 2002).

The WHO European Centre for Environment and Health has conducted several studies (Brouwer et al., 1998; Solomon and Weiss, 2002; Malisch and van Leeuwen, 2003) in human milk, designed to assess levels and content and thus levels of lipophilic compounds, namely the time of sampling during lactation, breast-feeding patterns and maternal characteristics (Needham and Wang, 2002).

The main goal of each Program has been to monitor dioxin levels from the undertaken studies provided first indicative data on the extent and pattern of dioxin body burden of the studied populations. For the incinerator near Lisbon, a preliminary temporal trend in milk dioxin levels has been obtained, which enabled provisional conclusions on dioxins source control effectiveness. However, full exploration of results has not yet been performed to investigate: (i) maintenance of non-significant difference between exposed and non-exposed individuals when an enlarged group composed by all subjects from both studies is considered; (ii) possible covariates of the dioxin levels in this whole group, for prevention priorities. These investigations are the objective of the present work.

2. Experimental

2.1. Sampling

Apparent healthy pregnant women, not-known occupationally exposed to dioxins, primiparous and/or breast-feeding first child or, at least, 3 years after breast-feeding the last child, living at residing area for more than 1 year, volunteered to participate in the biomonitoring study after written informed consent. Altogether, study group included 181 volunteers, being 123 from Lisbon area (Lisbon community) and 58 from Madeira (Madeira community). In relation to specific living area, 73 (potentially exposed) reside at a maximum distance less than 5 km from an incineration facility and 108 (controls) live and/or work far from the plant for more than 5 km. Exposed and non-exposed women are as much as possible similar in socio-demographic characteristics, in order to avoid between-group bias.

Between 1999 and 2003, human milk samples (∼40 ml) were collected in decontaminated vials and through breast-pumps provided to volunteers, during a morning visit to
the women’s residence 30 days after delivery. For gathering relevant information to identify parameters that might have influenced the individual PCDD/Fs body burden, a questionnaire was applied. In addition to personal data, residence, parity, number of breast-fed children and breast-feeding duration of previous children, profession, smoking habits, use of medicines, and specific dietary habits (mainly consumption of meat, fish, dairy and local food) have been evaluated. Samples were frozen (−20 °C) until analysis.

2.2. Analytical procedures

Milk was collected in chemically cleaned glass bottles and frozen within the next few hours. All samples were shipped on dry ice by an international courier to ERGO Research Laboratory in Hamburg, Germany for dioxin analysis. The samples were stored frozen until analysed. Seven dibenzodioxin, and ten dibenzofuran congeners were analysed by high resolution gas chromatography coupled with high resolution mass spectrometry. All analyses were performed following the isotope dilution method. The 17 native and \(^{13}\)C labelled standards used were obtained from Cambridge Isotope Laboratories, USA and from Wellington Laboratories, Guelph, Canada.

Solvents were supplied by Promochem (cyclohexane, hexane and dichloromethane), Baker (diethyl ether), and Mallinckrodt (ethanol, toluene). Silica gel, alumina oxide, sodium sulphate, potassium oxalate, sulphuric acid and potassium hydroxide were obtained from Merck. The method is described in detail by Fürst et al. (1992).

Levels of dioxin compounds are reported in pg/g, or parts per trillion (ppt), lipid, and in World Health Organization (WHO) dioxin toxic equivalents (TEQs). In addition, lipid content in each sample was gravimetrically measured. Pooled milk samples and method blank samples were also analyzed as part of a quality control procedure (QA/QC).

Before extraction all 17 2,3,7,8 substituted \(^{13}\)C-labelled PCDDs/PCDFs are added to the samples. After spiking, the samples are extracted with adequate solvents using a liquid/liquid extraction for milk. The clean up is done on multicolumn systems involving carbon-on-glass fibre. The measurement is performed by means of high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) on a Micromass AutoSpec operating at a resolution of 10000 using a DB-5 capillary column. The quantification is carried out by the isotope dilution method.

The analytical method applied for human milk was successfully tested in various national and international quality control studies and proficiency tests (WHO, 1995; ICDF, 2001).

2.3. Statistical analysis

Data base management was performed using Microsoft Access 2000 (9.0.3821 SR-1) and, for the statistical analyses, SPSS software version 12.0 for Windows was used. Significance level was generally fixed at \(z = 0.05\). To describe categorical variables, counts and percentages have been used. Numerical variables were described by their arithmetic means, medians, standard deviation and range of variation. Since PCDD/F levels suggest some deviation from normal distribution, appropriate test (Mann–Whitney) was used for comparative analysis across areas of residence, communities and types of parity. The relationship between age and PCDD/F levels was estimated by computing Spearman’s correlation coefficient.

When PCDD/F levels were recoded to percentage of results above median or 75th percentile, Chi-Square test was used to study relationship between these variables and area of residence, community and parity and Mann–Whitney test for the relationship with age. In order to estimate magnitude of statistical association through odds ratio adjusted for covariates, multiple logistic regression has been used, considering as dependent variable PCDD/F levels with cut-off in median and in 75th percentile. To decide on variables to enter and stay in the multiple model, environmental health relevance in bivariable analysis and missing values lesser than 1% were the criteria.

3. Results and discussion

Analysis performed in the studied variables such as age, main professional activity, relevant dietary and smoking habits has shown that differences in relation to specific living area (exposed versus control area) were not statistically significant. These findings led to the conclusion that the results to be obtained from the present study are not likely to be confounded by a selection bias.

To investigate possible influencing factors on dioxin body burden as determined in human milk, living area of the subjects, community, age, parity and several other personal and environmental variables (namely professional activity and hobbies considered risky for higher exposure, present or past smoking habits, intake frequencies of fruit and vegetables, and preferential consumption of meat or fish) have been studied. From all statistical analyses performed, only living area, community, parity and age have been identified as relevant factors in the relationship with dioxin body burden.

Table 1 summarizes comparative analysis of PCDD/F human milk levels across areas of residence (exposed and non-exposed or control), communities (Lisbon and Madeira) and types of parity (primiparae and multiparae), as well as correlation between age and dioxin levels. Results are given in pg WHO-TEQs per gram of fat. In relation to the participants’ specific living area, median and mean PCDD/F levels are practically identical for exposed and non-exposed (control) women (Table 1 and Fig. 1), with differences not statistically significant (\(p = 0.659\)). These results indicate that dioxin milk levels of the group living in the area of potential influence of each incinerator are not significantly increased by their PCDD/F stack emissions. This is both an important...
finding and accurate statement, supporting the dioxin sources control effectiveness.

Still from Table 1 and also from Fig. 2, it can be observed that, concerning studied communities, women from Lisbon show considerable higher median PCDD/F levels in comparison with those from Madeira (10.6 and 5.8 pg WHO-TEQ/g fat, respectively), being differences statistically significant ($p < 0.001$).

Overall mean age of studied breast-feeding women was about 30 years with standard deviation of 6 years within a range of variation from 18 to 52 years. The results for total TEQs in human milk were positively associated with age of women (Table 1), showing a significant correlation for the whole group ($R_s = 0.351$; $p < 0.001$).

When parity is considered, it can be seen that median and mean PCDD/F levels are quite similar for primipare and multipare mothers (Table 1), with differences not statistically significant ($p = 0.618$). Although same results have also been found by other authors (Focant et al., 2002), they are not in accordance with the well documented expected decrease of PCDD/F concentrations in milk from primipare to multipare (Fürst et al., 1992; Kiviranta et al., 1999; Clewell and Gearhart, 2002), suggesting that other variables besides number of children might be controlled when multipare are included.

Table 2 shows comparative analysis of breast-feeding women with higher versus lower dioxin body burden in relation to area of residence, community, parity and age. As can be observed, statistical associations presented in Table 1 are maintained when cut-off in median and in 75th percentile of PCDD/F levels are considered. From these results it can be assumed that the exposure was relatively homogeneous in the different PCDD/F level groups identified through cut-offs, suggesting no association between exposure from incinerators and dioxin levels, as expected.

As shown in Table 1, total WHO-TEQs in human milk were positively associated with age of women (Table 1), showing a significant correlation for the total population ($R_s = 0.351$; $p < 0.001$). However, when women’s age is analysed by area of residence, community and parity (Table 3), differences are not statistically significant for community ($p = 0.848$), meaning that age is not a confounding factor for the dioxin levels of women from Lisbon and Madeira. Concerning parity, although (as expected) associated with age ($p < 0.001$), it can not be considered a confounding factor.
factor for the women dioxin body burden since, as can be seen from Table 1, it is not associated with PCDD/F levels in human milk ($p = 0.618$).

From the several personal and environmental variables analysed for contribution to the PCDD/Fs concentration in human milk, only area of residence (or participants’ specific living area), community, parity and age have been considered to include in the multiple regression model mainly due to their environmental health relevance and also missing values lesser than 1%. As can be observed from Table 4, identified statistical association of Lisbon community with higher PCDD/F levels is confirmed ($OR = 16.13$ for cut-off in median; $OR = 22.17$ for cut-off in 75th percentile), meaning that even controlling influent variables such as age, Lisbon still presents higher probability for the occurrence of more elevated dioxin levels. This finding is in agreement with the expected higher environmental pressure of dioxins in Lisbon (as a large urban industrialized centre) when compared with Madeira, assuming effective control of PCDD/F emissions from both the incineration facilities operating in Lisbon and in Madeira.

The pattern of the single congeners for PCDD/Fs in human milk from Lisbon and Madeira (Fig. 3) was very similar being the highest contributions, in descending order, from 12378-PCDD, 23478-PCDF, 123678-HCDD, and 2378-TCDD. Altogether, these four individual

Table 2
Comparative analysis of breast-feeding women with higher and lower dioxin body burden (pg WHO-TEQs/g fat) in relation to area of residence, community, parity and age

<table>
<thead>
<tr>
<th>Variables</th>
<th>PCDD/Fs < Median</th>
<th>PCDD/Fs ≥ Median</th>
<th>PCDD/Fs < 75th percentile</th>
<th>PCDD/Fs ≥ 75th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>n</td>
<td>%a</td>
<td>n</td>
<td>%a</td>
</tr>
<tr>
<td>Exposed</td>
<td>38</td>
<td>42.2</td>
<td>35</td>
<td>38.5</td>
</tr>
<tr>
<td>Control</td>
<td>52</td>
<td>57.8</td>
<td>56</td>
<td>61.5</td>
</tr>
<tr>
<td>Community</td>
<td>Lisbon</td>
<td>41</td>
<td>45.6</td>
<td>42</td>
</tr>
<tr>
<td>Madeira</td>
<td>49</td>
<td>54.4</td>
<td>9</td>
<td>9.9</td>
</tr>
<tr>
<td>Parity</td>
<td>Primiparae</td>
<td>49</td>
<td>57.6</td>
<td>49</td>
</tr>
<tr>
<td>Multiparae</td>
<td>36</td>
<td>42.4</td>
<td>39</td>
<td>44.3</td>
</tr>
<tr>
<td>Age</td>
<td>Median</td>
<td>27.0</td>
<td>31.0</td>
<td><0.001c</td>
</tr>
<tr>
<td>Mean</td>
<td>21.2</td>
<td>31.2</td>
<td></td>
<td>28.7</td>
</tr>
<tr>
<td>SD</td>
<td>6.0</td>
<td>5.3</td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>Min–Max</td>
<td>18–52</td>
<td>19–42</td>
<td></td>
<td>18–52</td>
</tr>
</tbody>
</table>

a Percentages within PCDD/Fs groups defined by median and 75th percentile cut-offs.
b Chi-Square test.
c Mann–Whitney U-test.

Table 3
Comparative analysis of age (years) in relation to area of residence, community and parity

<table>
<thead>
<tr>
<th>Variables</th>
<th>n</th>
<th>Median (years)</th>
<th>Mean (years)</th>
<th>SD (years)</th>
<th>Min. (years)</th>
<th>Max. (years)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Exposed</td>
<td>73</td>
<td>29</td>
<td>30</td>
<td>6</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>Control</td>
<td>108</td>
<td>30</td>
<td>30</td>
<td>6</td>
<td>19</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td>Lisbon</td>
<td>123</td>
<td>29</td>
<td>30</td>
<td>6</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>Madeira</td>
<td>58</td>
<td>30</td>
<td>30</td>
<td>6</td>
<td>20</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>Primiparae</td>
<td>98</td>
<td>27</td>
<td>27</td>
<td>5</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Multiparae</td>
<td>75</td>
<td>33</td>
<td>33</td>
<td>6</td>
<td>21</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

a Mann–Whitney U-test.

Table 4
Multiple logistic regression analysis relative to higher dioxin levels in human milk (pg WHO-TEQ s/g fat)

<table>
<thead>
<tr>
<th>Covariables</th>
<th>PCDD/Fs ≥ Median</th>
<th>PCDD/Fs ≥ 75th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>pOR</td>
</tr>
<tr>
<td>Area (Exposed vs. Control*)</td>
<td>0.66</td>
<td>0.272</td>
</tr>
<tr>
<td>Age – in years</td>
<td>1.15</td>
<td><0.001</td>
</tr>
<tr>
<td>Community (Lisbon vs. Madeira*)</td>
<td>16.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Parity (Primiparae vs. Multiparae*)</td>
<td>1.58</td>
<td>0.291</td>
</tr>
<tr>
<td>Model p value</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Hosmer and Lemeshow p value</td>
<td>0.108</td>
<td>0.964</td>
</tr>
<tr>
<td>Predicted %</td>
<td>74.6</td>
<td>79.1</td>
</tr>
</tbody>
</table>

* Reference category; OR: Odds ratio adjusted to covariables.
Congeners accounted for about 84% of the total identified dioxin body burden in the studied groups and moments of observation, within a range from 83% to 86%.

Acknowledgements

Authors of this study wish to express their gratitude to VALORSUL – Valorização e Tratamento de Resíduos Sólidos Urbanos da Área Metropolitana de Lisboa, Norte – and to the Autonomous Region of Madeira, Regional Ministry of Environment and Natural Resources, for the support of the present research partially included in their ongoing Environmental Health Surveillance Programs, which are being developed, under contract, by the Institute of Preventive Medicine – Faculty of Medicine, University of Lisbon. The authors are very grateful to the technical staff from the Maternity Dr. Alfredo da Costa, in Lisbon, and from Central Maternity of Funchal and local Health Centres (Camacha and Estreito-Jardim da Serra) for the excellent assistance in fieldwork and sample collection. Very special thanks are also due to the volunteers for their excellent collaboration.

References

Cerna, M., Baigar, L., Czihova, S., Grabic, R., Kozac, J., Kratenova, J., Maly, M., Volf, J., Smid, J., Zegilcova, K., 2004. Levels of PCDDs, PCDFs, and PCBs in the blood of the non-occupationally exposed residents living in the vicinity of a chemical plant, comparison with a background level for the Czech population. Organohalogen Compd. 66, 2507–2512.

Malisch, R., van Leeuwen, F.X.R., 2003. Results of the WHO-coordinated study on the levels of PCBs, PCDDs and PCDFs in breast milk. Organohalogen Compd. 64, 140–143.

environmental health survey program near Lisbon. Organohalogen Compd. 55, 247–250.
WHO Regional Office for Europe: Consultation on the third round of interlaboratory quality control studies on levels of PCBs, PCDDs and PCDFs in breast milk, blood, cows milk and fish. EUR/ICP EHAZ 94/05/B03(1), Denmark 1995.